Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(18): 7186-7194, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37103881

RESUMO

The emergence of the coronavirus disease 2019 (COVID-19) pandemic prompted researchers to develop portable biosensing platforms, anticipating to detect the analyte in a label-free, direct, and simple manner, for deploying on site to prevent the spread of the infectious disease. Herein, we developed a facile wavelength-based SPR sensor built with the aid of a 3D printing technology and synthesized air-stable NIR-emitting perovskite nanocomposites as the light source. The simple synthesis processes for the perovskite quantum dots enabled low-cost and large-area production and good emission stability. The integration of the two technologies enabled the proposed SPR sensor to exhibit the characteristics of lightweight, compactness, and being without a plug, just fitting the requirements of on-site detection. Experimentally, the detection limit of the proposed NIR SPR biosensor for refractive index change reached the 10-6 RIU level, comparable with that of state-of-the-art portable SPR sensors. In addition, the bio-applicability of the platform was validated by incorporating a homemade high-affinity polyclonal antibody toward the SARS-CoV-2 spike protein. The results demonstrated that the proposed system was capable of discriminating between clinical swab samples collected from COVID-19 patients and healthy subjects because the used polyclonal antibody exhibited high specificity against SARS-CoV-2. Most importantly, the whole measurement process not only took less than 15 min but also needed no complex procedures or multiple reagents. We believe that the findings disclosed in this work can open an avenue in the field of on-site detection for highly pathogenic viruses.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanocompostos , Humanos , Ressonância de Plasmônio de Superfície/métodos , SARS-CoV-2 , COVID-19/diagnóstico , Técnicas Biossensoriais/métodos , Anticorpos
2.
Bioeng Transl Med ; : e10410, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36248235

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in late 2019 leading to the COVID-19 disease pandemic that triggered socioeconomic turmoil worldwide. A precise, prompt, and affordable diagnostic assay is essential for the detection of SARS-CoV-2 as well as its variants. Antibody against SARS-CoV-2 spike (S) protein was reported as a suitable strategy for therapy and diagnosis of COVID-19. We, therefore, developed a quick and precise phase-sensitive surface plasmon resonance (PS-SPR) biosensor integrated with a novel generated anti-S monoclonal antibody (S-mAb). Our results indicated that the newly generated S-mAb could detect the original SARS-CoV-2 strain along with its variants. In addition, a SARS-CoV-2 pseudovirus, which could be processed in BSL-2 facility was generated for evaluation of sensitivity and specificity of the assays including PS-SPR, homemade target-captured ELISA, spike rapid antigen test (SRAT), and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Experimentally, PS-SPR exerted high sensitivity to detect SARS-CoV-2 pseudovirus at 589 copies/ml, with 7-fold and 70-fold increase in sensitivity when compared with the two conventional immunoassays, including homemade target-captured ELISA (4 × 103 copies/ml) and SRAT (4 × 104 copies/ml), using the identical antibody. Moreover, the PS-SPR was applied in the measurement of mimic clinical samples containing the SARS-CoV-2 pseudovirus mixed with nasal mucosa. The detection limit of PS-SPR is calculated to be 1725 copies/ml, which has higher accuracy than homemade target-captured ELISA (4 × 104 copies/ml) and SRAT (4 × 105 copies/ml) and is comparable with qRT-PCR (1250 copies/ml). Finally, the ability of PS-SPR to detect SARS-CoV-2 in real clinical specimens was further demonstrated, and the assay time was less than 10 min. Taken together, our results indicate that this novel S-mAb integrated into PS-SPR biosensor demonstrates high sensitivity and is time-saving in SARS-CoV-2 virus detection. This study suggests that incorporation of a high specific recognizer in SPR biosensor is an alternative strategy that could be applied in developing other emerging or re-emerging pathogenic detection platforms.

3.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833688

RESUMO

The SPR phenomenon results in an abrupt change in the optical phase such that one can measure the phase shift of the reflected light as a sensing parameter. Moreover, many studies have demonstrated that the phase changes more acutely than the intensity, leading to a higher sensitivity to the refractive index change. However, currently, the optical phase cannot be measured directly because of its high frequency; therefore, investigators usually have to use complicated techniques for the extraction of phase information. In this study, we propose a simple and effective strategy for measuring the SPR phase shift based on phase-shift interferometry. In this system, the polarization-dependent interference signals are recorded simultaneously by a pixelated polarization camera in a single snapshot. Subsequently, the phase information can be effortlessly acquired by a phase extraction algorithm. Experimentally, the proposed phase-sensitive SPR sensor was successfully applied for the detection of small molecules of glyphosate, which is the most frequently used herbicide worldwide. Additionally, the sensor exhibited a detection limit of 15 ng/mL (0.015 ppm). Regarding its simplicity and effectiveness, we believe that our phase-sensitive SPR system presents a prospective method for acquiring phase signals.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Interferometria , Refratometria
4.
Sci Rep ; 7: 44555, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281689

RESUMO

White-light scanning interferometry (WLSI) is often used to study the surface profiles and properties of thin films because the strength of the technique lies in its ability to provide fast and high resolution measurements. An innovative attempt is made in this paper to apply WLSI as a time-domain spectroscopic system for localized surface plasmon resonance (LSPR) sensing. A WLSI-based spectrometer is constructed with a breadboard of WLSI in combination with a spectral centroid algorithm for noise reduction and performance improvement. Experimentally, the WLSI-based spectrometer exhibits a limit of detection (LOD) of 1.2 × 10-3 refractive index units (RIU), which is better than that obtained with a conventional UV-Vis spectrometer, by resolving the LSPR peak shift. Finally, the bio-applicability of the proposed spectrometer was investigated using the rs242557 tau gene, an Alzheimer's and Parkinson's disease biomarker. The LOD was calculated as 15 pM. These results demonstrate that the proposed WLSI-based spectrometer could become a sensitive time-domain spectroscopic biosensing platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...